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Several recent papers we’ve been involved in have utilized the isometric log-ratio (ILR) 

transform to analyze microbiome datasets. The papers and their software packages range from a 

phylogenetic transform (PhILR), a phylogenetic version of factor analysis (phylofactor), and using 

balance trees for hierarchical clustering (gneiss). In this post, we will demystify the ILR transform to help 

readers disentangle the literature that uses this transform in different ways to perform different 

analyses.  

  The elevator speech is that the ILR transform is a convenient way of measuring the difference 

between two groups of species, 𝑅 and 𝑆, and the three methods above, which all use the ILR transform 

to measure differences, differ in which groups of species they measure the difference between.  

The “isometric log-ratio transform” sounds scary. Look, below is its scary formula: 

𝑦 = √
𝑟𝑠

𝑟+𝑠
log

𝑔(𝒙𝑅)

𝑔(𝒙𝑆)
. 

AHH! Don’t worry, we’re mathematicians (very rarely do we get to say that).  

To demystify this scary formula, we will conveniently break up the “isometric log-ratio 

transform” up into four parts: “ratio”, “log”, “isometric”, and “transform”. We’ll leave the explanation of 

the hyphen, “-“, to a linguist. To lubricate the mind for the next sections, now is the time to pick up your 

soothing tea, triple-shot of espresso, or sipping scotch (AW prefers the latter). <sips scotch>. 

Ratios – It’s all relative 

A fundamental premise/assumption in our analyses of microbiome datasets is that sequence-

count data are “compositional”. By “compositional”, we mean that these data provide only information 

on relative – not absolute – abundances. When we assume that the data are compositional, the benefit 

of using ratios becomes clear. The compositionality of sequence-count data has been motivated in the 

primary literature, such as here and here, but we’ll benefit from building our own, simple examples to 

motivate the compositional assumption for sequence-count data <sips scotch>. 

  Two thought experiments motivate the compositional assumption. Consider a bacterial 

community composed of only two types of bacteria, Bacteroides (B’s) and Firmicutes (F’s). Suppose we 

have one sample in which there are 100 sequence-counts of Bacteroides and 200 counts of Firmicutes.  

  For the first thought experiment, imagine we double the sequencing depth of the exact 

same community, yielding 200 B’s and 400 F’s – if we looked at the differences in counts, we’d say that 

B’s increased by 100 and F’s increased by 200! Typically, this is why people rarify data, but it isn’t 

necessary to rarify our counts if we just look at ratios: 200/100 = 2 is the same as 400/200 = 2. Using 

ratios correctly indicates that the abundances of B’s relative to F’s did not change. 

  For the second thought experiment, assume abundances DO change, but the 

sequencing depth does not. Imagine that we go from 100 B’s and 200 F’s to 200 B’s and 100 F’s.  What 
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can we infer about the underlying bacterial community from these data? How did they change? Illumina 

sequence-counts are not qPCR – they can’t tell us about changes in DNA concentrations in the real 

community. These data can’t tell us whether the changes we observe are due to B’s increasing in 

abundance, F’s decreasing in abundance, or some combination of the two. The only thing we can say is 

that B’s change *relative to* F. How do we quantify this change? By ratios of ratios <sips scotch>.  

 Suppose we’re using ratios of F’s to B’s. In our original sample, we had 200/100 = 2. In our 

second sample, we have 100/200 = 0.5. How “different” are these, i.e. by how much did they change? 

Not only can we use ratios to measure the difference between B’s and F’s within a sample, but we can 

and often should use ratios to measure the difference across samples. In particular, 2/0.5 = 4 is a natural 

measure of difference in how much the community changed. In the real community, our two bacterial 

populations changed by a combined factor of 4 to produce our new samples. 

   Try out a couple of examples of this: Suppose that the true community has 1 million B’s and 2 

million F’s. Possible scenarios for our second sample are: 4 million B’s and 2 million F’s (multiply B’s by 

4), 1 million B’s and 0.5 million F’s (divide F’s by 4), 2 million B’s and 1 million F’s (multiply B’s by 2 and 

divide F’s by 2), or any number of fractional combinations a*1 million B’s and b*2 million F’s yielding a 

combined change of a/b=4.  

The train of thought, then, is: (1) sequence-count data appear compositional, (2) compositional 

data only allow us to infer relative abundances, and (3) differences in relative abundance are measured 

via ratios, which allow us to make inferences that stay within the confines of the data’s limitations. On a 

deeper note, when we’re measuring differences with ratios, ratios are acting like subtraction, and 

logarithms can return us to the familiar world of using subtraction to measure differences. <sips scotch>. 

Logarithms – Changing Multiplication to Addition Since 1614 

 When we use ratios to measure differences, and ratios are like subtraction, what should be 

addition? Addition is the inverse of subtraction, so we want (a+b)-b=a, from which it’s clear that 

multiplication should be our compositional “addition” since (a*b)/b=a. If multiplication is the 

compositional data analyst’s “addition”, what is the compositional data analyst’s “division” & 

“multiplication”?? Well, layman’s multiplication is defined as repeated addition, i.e. a+a+a = 3*a, so the 

compositional data analyst’s “multiplication” will be repeated “addition”, i.e. a*a*a=a3, or layman’s 

exponentiation. 

   That we can redefine “addition” and “subtraction” for data on weird spaces is mind-bending and 

deeply satisfying if you’re like us. However, most people like to steal lunch money from people like us 

<sips scotch and cries a little>. So, before you erupt into a fit of rage and steal lunch money from the 

nearest mathematician, or curl into a ball and cry (different people have different responses), let’s 

simplify all of this. Take your count data and take the logarithm (assume there are no zeros, or replace 

zeros with a positive number less than 1 such as 0.5 – we’ll talk about this later). Now, the logarithm of a 

product is the sum of logarithms… the logarithm of a ratio is the difference of logarithms… the logarithm 

of a variable raised to a power is the logarithm multiplied by the power. The funky operations for the 

compositional data analyst’s “addition” and “multiplication” are reduced to their layman’s analogues by 

simply taking logarithms. 



 Let’s try this out. Say we have a vector of counts, 𝒙, from 𝑛 species. What is the mean count 

across species? An appropriate measure of central tendency would use the “addition” and “division” 

operations defined above, giving us the geometric mean, 

𝑔(𝒙) = ∏ 𝑥𝑖

1
𝑛⁄𝑛

𝑖=1 . 

However, if we look at log-count data, we get  

log 𝑔(𝒙) = ∑
log 𝑥𝑖

𝑛
𝑛
𝑖=1  , 

which is the familiar, arithmetic mean of the logarithm. Logarithms turn annoying products and ratios 

into more friendly addition and subtraction. 

 Now that we’ve discussed logarithms as ways of making compositional operations less annoying, 

we can understand the “log-ratio” portion of the “isometric log-ratio transform”, 

 log
𝑔(𝒙𝑅)

𝑔(𝒙𝑆)
, 

where 𝒙𝑅 is the vector of counts in group 𝑅 and 𝒙𝑆 the vector of counts in group 𝑆. The ILR transform is 

a measure of difference between two groups, 𝑅 and 𝑆, best intuited by noting that the log-ratio of 

geometric means is the difference of arithmetic means of logarithms. In even simpler words, the ILR is a 

difference of means between two groups.  

  Suppose our Firmicutes in our original sample above are composed of 25 OTUs with 8 counts 

each (200 counts), and suppose our Bacteroides are composed of 50 OTUs with 2 counts each (100 

counts). Letting 𝑅 be our Firmicutes and 𝑆 be our Bacteroides, 𝑔(𝒙𝑅) = 8 is the geometric mean of 

counts of Firmicutes and 𝑔(𝒙𝑆) = 2 is that of Bacteroides. The log-ratio part of our ILR transform will be 

log(4), which is greater than 0, indicating that Firmicutes OTUs are, on average across OTUs, more 

abundant than Bacteroides OTUs.  

Isometric - … <sips scotch> 

 The “isometric” part of the isometric log-ratio transform refers to a preservation of distances. To 

really understand how the ILR transform is preserving distances, we’d have to introduce, motivate and 

write-out the Aitchison distance and, within seconds of writing down the Aitchison distance, we’re 

worried readers would grab torches & pitchforks and all of our remaining lunch money would be stolen. 

However, we can provide some intuition as to why having an “isometric” transform is important <sips 

scotch>.  

The first step towards understanding “preserving distances” is to do some mind-yoga and 

understand distances. Distances are well-behaved measures of the difference between two data points. 

If we’re using ratios like layman’s subtraction to measure differences, we should probably use ratios to 

measure distances. A guy named Aitchison fleshed this out and defined a consistent measure of distance 

between two compositional data points. Much like someone noted that the distance between two 

points on the Earth is most appropriately measured as the shortest path along the surface of a sphere, 

Aitchison had to note that compositional data are constrained to a surface and we need distances that 

measure the length of the shortest path between two points, where “long” and “short” is measured by 

taking ratios or subtracting logarithms. Thinking about spheres provides intuition that you can work 



with: compositional data are constrained to a weird surface (the simplex) and require a weird distance 

(Aitchison distance).  

So then why “preserve” distances? Transforms warp the data – taking transforms, especially 

non-linear transforms like logarithms and ratios, can bend data points closer together and farther away 

from one-another. If we were being careless and transforming latitude-longitude data to log-latitudes 

and regular-longitudes (defining 0 latitude as the south pole), the south pole would shoot to minus 

infinity and the Euclidean distance between two people holding hands near the south pole would seem 

greater than the distance between Chile and Canada. If we transform the data, we want to ensure we 

don’t warp distances in ways that give us silly results. The way to do that is to define both a transform 

and a distance such that the distance between transformed data is equal to our original distance 

between our original, un-transformed data. The isometric log-ratio transform does just that, and in a 

manner that is very convenient: the Euclidean distance between two ILR-transformed data points is 

equal to the Aitchison distance between our original, compositional data. 

The mathemagicians who conceived the ILR transform noted that the isometry is accomplished 

through a combination of the use of geometric means to measure central-tendency in a group, as 

opposed to summing relative abundances (due to the annoying fact that log(a+b) is impossible to 

simplify in terms of log(a) and log(b)), and the inclusion of a mysterious constant in front of our log-ratio,  

√
𝑟𝑠

𝑟+𝑠
  

where 𝑟 = 25 is the number of OTUs in group 𝑅 and 𝑠 = 50 the number of OTUs in group 𝑆. Don’t be 

afraid of this mysterious constant – this constant is our friend. Even though we’ve had enough scotch to 

start calling constants “friends” (an indication of the scotch we’ve had, or our complete lack of friends) 

and you’ve had enough math, it’s worth taking a second to thinker a bit and understand why that 

constant is our friend <sips scotch>. 

In mathspeak, the ILR transform is a change of basis from the CLR transform, and the constant 

ensures that the basis being used is orthonormal <hands over remaining lunch money>. More 

practically, that constant is our friend because it ensures we don’t warp the data too much, like our log-

latitudes did. Warped data can cause us some coordinates (e.g. our log-latitudes) to have warped 

variances, and our constant friend stabilizes the variance of log-ratios of geometric means, which is 

super important since almost all of statistics involves explaining variance (regression & model fitting), 

analysis of variance (ANOVA) and finding axes along which the data tend to co-vary (PCA). There would 

be no statistics without variance <sips scotch> – every data point would be equal to the mean - and so 

what happens to the variance under our ILR transform is worth paying special attention to. 

  Let’s thinker our way through this. The logarithm of the ratio of geometric means is a difference 

of arithmetic means: 

log
𝑔(𝒙𝑅)

𝑔(𝒙𝑆)
=  log 𝒙𝑅

̅̅ ̅̅ ̅̅ ̅̅ − log 𝒙𝑆
̅̅ ̅̅ ̅̅ ̅̅ . 

However, the variance of the arithmetic mean depends on the sample size. That’s why the sample mean 

is awesome – it’s an unbiased estimate of the true mean and its variance shrinks to zero as our sample 

size gets large. Suppose the log-count data for each OTU, log 𝑥𝑖, were all independent and all had some 
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true variance, 𝜎2. The variance of the arithmetic mean of  𝑟 OTUs, ∑ log 𝑥𝑖 𝑟⁄ , will be 
𝜎2

𝑟
. Consequently, 

the variance of our un-scaled log-ratio above is 

𝜎2

𝑟
+

𝜎2

𝑠
= 𝜎2 (

𝑟+𝑠

𝑟𝑠
). 

The variance of our log-ratio of geometric means depends on the sizes of the groups, 𝑅 and 𝑆. If we have 

a bunch of ILR coordinates, the ones corresponding to smaller groups would be “warped” like our log-

latitude data and have higher variances. Consequently, if we used PCA to skewer our hot-dog cloud of 

data points, on a null dataset of a bunch of ILR variables corresponding to a bunch of groups without 

using this constant, we would expect the loadings (the skewers) to be heavily weighted by ILR 

coordinates corresponding to small groups that have very high variance. However, we could correct for 

this by multiplying our log-ratio by our friend, 

√
𝑟𝑠

𝑟+𝑠
.  

Now, you can perform PCA without being fooled by small groups, you can compare the variances of 

different ILR coordinates without being obviously biased towards/against small groups, and do pretty 

much whatever you would normally do with your hot-dog cloud of data points scattered about in space. 

People can hold hands at our compositional South Pole without feeling too distant. 

Transform – Changing variables with a tree <sips scotch> 

Now that we know all about the isometric log-ratios, 

𝑦 = √
𝑟𝑠

𝑟 + 𝑠
log

𝑔(𝒙𝑅)

𝑔(𝒙𝑆)
, 

we can finish this rant by discussing why it’s a transform. Basically, we can take every coordinate – the 

counts of each OTU – and change them into new variables that correspond to log-ratios of groups. We 

are all familiar with changing coordinates from x-y-z Cartesian coordinates to spherical coordinates. We 

refer to our locations on Earth in terms of latitude and longitude because it’s a “more natural” way of 

viewing data (locations) given their constraints (on surface of a giant ball). Changing coordinates helps 

us calculate distances more easily over directions we are likely to travel given the constraints. Instead of 

using Aitchison distances of compositional data, we can use Euclidean distances (which everyone knows) 

between ILR-transformed data. 

Let’s understand how we go from one isometric log-ration transform, like the one listed above, 

to a whole coordinate system. We’re all comfortable with changing to spherical coordinates using 

formulas such as: 

𝑟𝑎𝑑𝑖𝑢𝑠 = √𝑥2 + 𝑦2 + 𝑧2 

and  

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = arcsin
𝑧

𝑟𝑎𝑑𝑖𝑢𝑠
 

defining two of three “coordinates” to help us locate points on Earth.  We can pinpoint any location on 

Earth provided all three coordinates carry distinct information. 



The ILR transform can define a set of coordinates carrying distinct, non-overlapping information, 

through a sequential binary partition (think: a strictly bifurcating tree or dendogram). Since the ILR 

transform is a difference between two groups, each coordinate can be interpreted as a split in a tree 

separating one group into two. For instance, the coordinate 

𝑦 = √
𝑟𝑠

𝑟 + 𝑠
log

𝑔(𝒙𝑅)

𝑔(𝒙𝑆)
 

Separates the group containing both 𝑅 and 𝑆 into two groups. This coordinate carries information about 

the relative abundance of group 𝑅 to group 𝑆. Our first coordinate carries no information about 

differences in relative abundance within 𝑅 , and so another unique coordinate that doesn’t overlap with 

our first one could be defined easily: an ILR transform splitting 𝑅 into two groups measuring the 

differences in relative abundances of these two groups within 𝑅. Likewise, another unique coordinate 

can split 𝑆 into two groups. This process can be repeated until we have a full coordinate system in the 

form of a bunch of isometric log-ratios that sequentially partition our OTUs into smaller and smaller 

groups. The groups at the end of this sequential binary partitioning procedure will be much smaller than 

the groups in the beginning, but thankfully the ILR transform is isometric and thus ensures that, in null 

datasets, all coordinates will have the same variance <sips scotch>.  

Now that we understand how this is a coordinate system, we need to pick a particular set of 

coordinates. Which groups, 𝑅 and 𝑆, should we choose? Given a dataset with 𝑛 OTUs, there are 

approximately a kajillion different trees (precisely (2𝑛-3)!! possible trees) we could make by defining 

different partitions and consequently there are approximately a kajillion different ILR coordinates. While 

the Earth spins about its axis, giving us a universally agreed natural choice for a reference axis to 

measure latitude, and longitude is fixed by convention at the Prime Meridian, microbiome datasets 

don’t immediately offer a choice of partition. Which one of the kajillion coordinates should we use? The 

three papers we’ve been involved in, PhILR, phylofactor and gneiss, all went different directions on how 

to pick a set of ILR coordinates for analyzing & interpreting microbiome data. Each has their 

interpretation and justification, and the utility of one or the other depends on your what kinds of effects 

you think you might observe in your data.  

The good news, however, is that since the ILR coordinates are basically “new axes” for the CLR 

transformed data, the hot-dog cloud of data points remains the same regardless which partition you 

use. Much like your position in Earth remains the same regardless what trickery mathematicians are 

doing, changing coordinates as they see fit <glares at mathemagicians>, the position of your data 

remains fixed regardless which coordinates you use. The only thing that changes is the ease of 

calculation of different kinds of changes in the data and the biological interpretation of inferences on 

individual coordinates. 

So, WTH is ILR? 

  The ILR transform is a change of variables from relative abundances to a set of log-ratios that 

preserve Aitchison distances and have stabilized variances under null data. We use ratios because we 

can only infer relative abundances, we use logarithms because ratios are annoying, and we make things 

“isometric” because we want to look at meaningful notions of distance in our constrained data and use 

standard statistical tools that partition variance. 



The ILR transform is a mathematical tool. The science comes in deciding how we use it for 

biology. The biggest open challenges with using the ILR transform are, in our opinion, (1) choosing the 

sequential binary partition for a biologically meaningful interpretation, (2) deciding how to incorporate 

sequencing depth into the certainty of our inferences, and (3) dealing with zeros, because logarithms 

don’t like zeros (sneak-peak: all methods use pseudo-counts, some more justified than others, and the 

choice of pseudo-counts defines the “distance” between a 0-count and a 1-count). 

  The ILR transform can be intuited as an average difference between two groups of species, and 

different methods, such as PhILR, phylofactor and gneiss, differ in open-challenge (1): which two groups 

to differentiate and how to interpret the coordinates. PhILR and phylofactor both use the phylogenetic 

tree as a scaffolding for coordinates. PhILR differentiates sister clades, and so there is only one PhILR 

transform for a given tree, there can be no polytomies in the tree, and coordinates correspond to 

differences between sister clades weighted by the branch length separating the sister clades. 

Phylofactor differentiates clades along edges in the tree according to which edge is “coolest”, so there 

are many phylofactorizations for a given tree, depending on the data and how you define “cool”, and 

coordinates are interpreted as inferences on edges along which an important trait may have arisen.  

Gneiss differentiates groups of OTUs in more general hierarchical clustering schemes to investigate 

partitions that cannot be explained by phylogeny (and, for a fluent user, the machinery in Gneiss could 

be used to perform phylogenetically-informed hierarchical clustering – stay tuned). Each method has its 

virtues and faults, and we’ll discuss these three methods in more detail later, but, by knowing WTF the 

ILR is, you should now be able to understand the heart of these methods, navigate the waters yourself 

and perhaps take your own stab at defining a phylogenetic “Prime Meridian”. 

  <sips whiskey>.  

  


